809 research outputs found

    Executive Functions as Moderators of Response to Behavioral Interventions for Adolescents with Attention-Deficit/Hyperactivity Disorder

    Get PDF
    Adolescents with Attention-Deficit/Hyperactivity Disorder (ADHD) experience significant academic impairment and multiple interventions have been developed to address common academic problems, such as difficulties with homework, organization, and planning skills. Given cost and resource constraints, research is needed on factors that mental health providers can use to select the most appropriate interventions. To date, there has been minimal research evaluating moderators of response to ADHD interventions. Further, many of the variables that have been studied do not have strong theoretical ties to the mechanisms of change invoked by the interventions. This study examined potential moderators of treatment response to two academic interventions for adolescents with ADHD: an organizational skills training intervention (HOPS) and a homework completion support intervention (CHIEF). Specifically, the study evaluated whether the cognitive skills known as executive functions (EF) moderate differential treatment response between the interventions. Results indicated that EF abilities were not consistently associated with differential treatment outcomes. Further, significant associations presented conflicting interpretations regarding which profiles of EF abilities were more responsive to HOPS in comparison to CHIEF

    The Provisional Understanding Regarding Deep Seabed Matters: An Ill-Conceived Regime for U.S. Deep Seabed Mining

    Get PDF

    Charge Detection in Graphene Quantum Dots

    Full text link
    We report measurements on a graphene quantum dot with an integrated graphene charge detector. The quantum dot device consists of a graphene island (diameter approx. 200 nm) connected to source and drain contacts via two narrow graphene constrictions. From Coulomb diamond measurements a charging energy of 4.3 meV is extracted. The charge detector is based on a 45 nm wide graphene nanoribbon placed approx. 60 nm from the island. We show that resonances in the nanoribbon can be used to detect individual charging events on the quantum dot. The charging induced potential change on the quantum dot causes a step-like change of the current in the charge detector. The relative change of the current ranges from 10% up to 60% for detecting individual charging events.Comment: 4 pages, 3 figure

    Epimorphisms of frames

    Get PDF

    Raman spectroscopy on etched graphene nanoribbons

    Full text link
    We investigate etched single-layer graphene nanoribbons with different widths ranging from 30 to 130 nm by confocal Raman spectroscopy. We show that the D-line intensity only depends on the edge-region of the nanoribbon and that consequently the fabrication process does not introduce bulk defects. In contrast, the G- and the 2D-lines scale linearly with the irradiated area and therefore with the width of the ribbons. We further give indications that the D- to G-line ratio can be used to gain information about the crystallographic orientation of the underlying graphene. Finally, we perform polarization angle dependent measurements to analyze the nanoribbon edge-regions

    Tunable Coulomb blockade in nanostructured graphene

    Full text link
    We report on Coulomb blockade and Coulomb diamond measurements on an etched, tunable single-layer graphene quantum dot. The device consisting of a graphene island connected via two narrow graphene constrictions is fully tunable by three lateral graphene gates. Coulomb blockade resonances are observed and from Coulomb diamond measurements a charging energy of ~3.5 meV is extracted. For increasing temperatures we detect a peak broadening and a transmission increase of the nanostructured graphene barriers

    Coulomb oscillations in three-layer graphene nanostructures

    Full text link
    We present transport measurements on a tunable three-layer graphene single electron transistor (SET). The device consists of an etched three-layer graphene flake with two narrow constrictions separating the island from source and drain contacts. Three lateral graphene gates are used to electrostatically tune the device. An individual three-layer graphene constriction has been investigated separately showing a transport gap near the charge neutrality point. The graphene tunneling barriers show a strongly nonmonotonic coupling as function of gate voltage indicating the presence of localized states in the constrictions. We show Coulomb oscillations and Coulomb diamond measurements proving the functionality of the graphene SET. A charging energy of 0.6\approx 0.6 meV is extracted.Comment: 10 pages, 6 figure

    Local gating of a graphene Hall bar by graphene side gates

    Full text link
    We have investigated the magnetotransport properties of a single-layer graphene Hall bar with additional graphene side gates. The side gating in the absence of a magnetic field can be modeled by considering two parallel conducting channels within the Hall bar. This results in an average penetration depth of the side gate created field of approx. 90 nm. The side gates are also effective in the quantum Hall regime, and allow to modify the longitudinal and Hall resistances
    corecore